山东大学第八届“可视计算”


基于二维图像集合的三维内容学习与生成

童欣(xtong@microsoft.com)

  • Deep learning has demonstrated its great advantages in many fields
  • Unified network architecture for different representations and tasks
  • Compact non-linear approximator for arbitrary functions

Learning 3D representations from 2D image collections

  • Exploiting huge amount of images/video datasets
  • Learn high quality 3D representation from realistic images
  • From image to 3D representation is a highly ill-posed problem
  • No multiple views and no correspondence between images

Two Solutions

Learning by synthesis

  • Learning a network to infer
  • underlying 3D representation from each 2D image
  • The rendering of the derived 3D representation should match the input 2D image
  • How to solve the ill-posed inverse rendering problem?

Learning by discrimination

  • Learning a generative model of the space of 3D representations from 2D images.
  • The rendering of generated 3D representation from each view should be indistinguishable from 2D real.
  • How to minimize the quality gap between synthesized images and real ones and preserve 3D consistency?

采用多幅图像对三维人脸进行生成

  • 3D scene layout generation from RGB/RGBD image collections(Mingjia Yang, Yuxiao Guo, Bin Zhou, Xin Tong, Indoor Scene Generation from a Collection of Semantic-segmented Depthemages,ICCV 2021.)
  • 3D object texture generation from real image collections(Rui Yu, Yue Dong, Pieter Peers, Xin Tong, Learning Texture Generators for 3D Shape Collections from internet Photo Sets, BMVC 2021.)

陈宝权教授的三位讲者报告:

Simulation and Optimization of Magneto elastic Thin Shells

JOINT NEURAL PHASE RETRIEVAL AND COMPRESSION FOR ENERGY-AND COMPUTATION-EFFICIENT HOLOGRAPHY ON THE EDGE

复杂三维形状的生成、分析与制造

轻质与可控弹性耦合的微几何结构仿真设计与优化

基于深度学习的无标签高泛化的快速均质化方法

面向制造的高保真几何结构优化:

提出了制造约束与复杂几何结构的共分析方法,解决增材制造中因打印精度、局部重力、分块拼接等造成的几何形状走样,克服了大体积或高度复杂结构如植物、毛发等在制造中的失真问题。

三维物体跟踪与增强现实(钟凡)

基本原理

PnP(Perspective-n-Points)问题

SIFT基于局部特征得到点对应

无纹理物体——利用轮廓形状信息(边缘信息与图像信息)

三维位姿优化

混合优化方法:只对面外旋转采用非局部搜索

可视化

BoxAR

tableau

Canis - A Language for Data-Driven Chart Animations

Deep Dive: Sampling for Progressive Visualization

https://kd-box.github.io

Deformation of 3D Printed Soft Robots: Sensing, Simulation and Control(Charlie C.L.Wang)

多模态信息感知的SLAM

特征点优化的相机与激光外参数标定

两阶段视角不变匹配法的激光SLAM

基于凸优化与IMU-KLT线段跟踪的点线SLAM

SLAM特征跟踪中存在问题:
在弱纹理、重复纹理、运动模糊、光照变化下,鲁棒性和精度较低
基于线的跟踪速度较慢

解决思路∶

  • 提出了点线特征混合策略:Point line with shorter tracks are categorized into “MSCKF”features and with longer tracks into ““SLAM”features.Especially,“SLAM” lines are added into the state vector toimprove accuracy of the proposed system.
  • 提出了基于L1-范数图优化的线段跟踪
  • 实验效果优于VINS-Mono,PL-VINS,OpenVINS
  • 在运动模糊和弱纹理场景下,实验效果优于ORB-SLAM3.

基于深度哈希学习的SLAM闭环检测与位姿误差纠正
基于随机森林学习与二值描述子学习相融合的并行搜索SLAM重定位
软硬协同SLAMI展示和展望

严肃化和泛化的游戏引擎技术

游戏化的xr工作——GritWorld

异构维度数据可视化应用的高效一体化构建方法(HUAWEI)

1.Aladdin定位:面向WEB应用的端到端智能无代码人机协同系统构建平台

  1. 生成既有静态页面、交互、业务逻辑与数据表达的全场景WEB应用
  2. 彻底打通从需求到设计到开发的全链路

2.Aladdin二维组件编辑方案:声明式语法、交互构建界面

3.Aladdin UVE Kernel三维编辑器

Taichi编程语言

1
2
3
4
5
#使用
pip install taichi
#在命令行中调用
ti gallery
#可以得到一个demo体验

作用:在图上优化代码

OpenGL中文文档